
Documentation of the pw85 library
Release 2.0

S. Brisard

May 24, 2021

CONTENTS

1 Overview 3
1.1 Introduction . 3
1.2 The contact function of Perram and Wertheim [PW85] . 3
1.3 Features of the overlap test . 4
1.4 Implementation . 5
1.5 Extensions . 5
1.6 Acknowledgements . 5

2 Installation 7
2.1 Installing the C++ library . 7
2.2 Installing the Python bindings . 7
2.3 Building the documentation . 8

3 Tutorial 9
3.1 Python tutorial . 9
3.2 C++ tutorial . 12

4 Theory 15
4.1 Mathematical representation of ellipsoids . 15
4.2 The contact function of two ellipsoids . 15
4.3 Geometric interpretation . 16

5 Implementation of the function f 19
5.1 Implementation #1: using Cholesky decompositions . 19
5.2 Implementation #2: using rational functions . 20
5.3 Comparison of the two implementations . 21

6 Optimization of the function f 25

7 Testing the implementation of the contact function 27

8 The C++ API 29
8.1 Representation of vectors and matrices . 29
8.2 API . 29

9 The python API 33

Bibliography 35

Python Module Index 37

i

ii

Abstract

This library implements the “contact function” defined by Perram and Wertheim (J. Comp. Phys. 58(3), 409–416,
DOI:10.1016/0021-9991(85)90171-8) for two ellipsoids. Given two ellipsoids, this function returns the square of the
common factor by which both ellipsoids must be scaled (their centers being fixed) in order to be tangentially in contact.

This library is released under a BSD 3-Clause License.

https://doi.org/10.1016/0021-9991(85)90171-8

Documentation of the pw85 library, Release 2.0

2 CONTENTS

CHAPTER

ONE

OVERVIEW

1.1 Introduction

It is quite common in materials science to reason on assemblies of ellipsoids as model materials. Although simplified
upscaling mean-field/effective-field theories exist for such microstructures, they often fail to capture the finest details
of the microstructure, such as orientation correlations between anisotropic inclusions, or particle-size distributions. In
order to account for such microstructural details, one must resort to so-called full-field numerical simulations (using
dedicated tools such as Damask or Janus, for example).

Full-field simulations require realizations of the microstructure. For composites made of ellipsoidal inclusions embed-
ded in a (homogeneous) matrix, this requires to be able to generate assemblies of (non-overlapping) ellipsoids. The
basic ingredient of such microstructure simulations is of course the overlap test of two inclusions.

Checking for the overlap (or the absence of it) of two ellipsoids is not as trivial as checking for the overlap of two
spheres. Several criteria can be found in the literature [VB72]; [PW85]; [WWK01]; [CYP07]; [ABH18]. We propose
an implementation of the contact function of Perram and Wertheim [PW85].

The present chapter is organised as follows. We first give a brief description of the contact function. Then, we discuss
two essential features of this function: robustness with respect to floating-point errors and suitability for application to
Monte-Carlo simulations. Finally, we give a brief description of the pw85 library.

1.2 The contact function of Perram and Wertheim [PW85]

The origin being fixed, points are represented by the 3×1 column-vector of their coordinates in a global cartesian frame.
For i = 1, 2, Eᵢ ⊂ ℝ³ denotes the following ellipsoid:

(1) Eᵢ = {m ∈ ℝ³: (m-cᵢ)ᵀ⋅Qᵢ⁻¹⋅(m-cᵢ) ≤ 1},

where cᵢ ∈ ℝ³ is the center of Eᵢ, and Qᵢ is a positive definite matrix. Perram and Wertheim define the following
function:

(2) f(λ; r₁₂, Q₁, Q₂) = λ(1-λ)r₁₂ᵀ⋅Q⁻¹⋅r₁₂,

where 0 ≤ λ ≤ 1 is a scalar, Q = (1-λ)Q₁ + λQ₂, and r₁₂ = c₂-c₁ denotes the center-to-center radius-vector. The
contact function μ²(E₁, E₂) of the two ellipsoids is defined as the unique maximum of f over (0, 1):

(3) μ² = max{f(λ; r₁₂, Q₁, Q₂), 0 ≤ λ ≤ 1}.

It turns out that the contact function has a simple geometric interpretation. Indeed, μ is the quantity by which each of
the two ellipsoids E₁ and E₂ must be scaled to bring them in contact. Therefore, an overlap test could be defined as
follows

3

https://damask.mpie.de/
https://github.com/sbrisard/janus

Documentation of the pw85 library, Release 2.0

• μ²(E₁, E₂) < 1: the two ellipsoids overlap,

• μ²(E₁, E₂) > 1: the two ellipsoids do not overlap,

• μ²(E₁, E₂) = 1: the two ellipsoids are tangent.

Despite its apparent complexity, this overlap test has two nice features that are discussed below.

1.3 Features of the overlap test

1.3.1 Robustness with respect to floating-point errors

All overlap tests amount to checking for the sign of a real quantity Φ(E₁, E₂) that depends on the two ellipsoids E₁
and E₂. The ellipsoids do not overlap when Φ(E₁, E₂) < 0; they do overlap when Φ(E₁, E₂) > 0. Finally, we
usually have Φ(E₁, E₂) = 0 when E₁ and E₂ are in tangent contact (but it is important to note that, depending on the
overlap criterion, the converse is not necessarily true).

In a finite precision setting, we are bound to make wrong decisions about pairs of ellipsoids that are such that Φ is
small. Indeed, let us consider a pair of ellipsoids (E₁, E₂) for which the true value of Φ, Φₑ(E₁, E₂), is close to the
machine epsilon. Then, the numerical estimate of Φ, Φₑ(E₁, E₂), is also (hopefully) a very small value. However,
whether Φₐ(E₁, E₂) is the same sign as Φₑ(E₁, E₂) (and therefore delivers the correct answer regarding overlap) is
uncertain, owing to accumulation of round-off errors. Such misclassifications are acceptable provided that they occur
for ellipsoids that are close (nearly in tangent contact). The overlap criterion will be deemed robust if it is such that
Φ(E₁, E₂) is small for nearly tangent ellipsoids only. This is obviously true of the overlap test based on the contact
function of Perram and Wertheim. Note that some of the overlap tests that can be found in the literature do not exhibit
such robustness.

1.3.2 Application to Monte-Carlo simulations

Generating compact assemblies of hard particles is a notoriously difficult task. Event-driven simulations [DTS05];
[DTS05a] are often used, but require a lot of book-keeping. A comparatively simpler approach [BL13] is similar to
atomistic simulations with a non-physical energy. More precisely, starting from an initial configuration where the n
ellipsoids E₁, …, Eₙ do overlap, a simulated annealing strategy is adopted to minimize the quantity U(E₁, …, Eₙ)
defined as follows:

(4) U(E₁, …, Eₙ) = ∑ u(Eᵢ, Eⱼ),
1 ≤ i < j ≤ n

where u(E₁, E₂) denotes an ad-hoc pair-wise (non-physical) potential, that should vanish when the two ellipsoids
do not overlap, and be “more positive when the overlap is greater” (this sentense being deliberately kept vague). A
possible choice for u is the following:

(5) u(E₁, E₂) = max{0, μ⁻¹(E₁, E₂)}.

Monte-Carlo simulations using previous implementations of the contact function of Perram andWertheim and the above
definition of the energy of the system were successfully used to produce extremely compact assemblies of ellipsoids
[BL13].

4 Chapter 1. Overview

Documentation of the pw85 library, Release 2.0

1.4 Implementation

pw85 is a C library that implements the contact function of Perram and Wertheim. It is released under a BSD-3 license,
and is available at https://github.com/sbrisard/pw85. It is fully documented at https://sbrisard.github.io/pw85.

The core library depends on The boost::mathGNU (for its implementation of the Brent algorithm).

The API is extremely simple; in particular it defines no custom objects: parameters of all functions are either simple
types (size_t, double) or arrays. Note that all arrays must be pre-allocated and are modified in-place. This minimizes
the risk of creating memory leaks when implementing wrappers for higher-level (garbage-collected) languages.

A Python wrapper (based on pybind11) is also provided. It has the following (fairly standard) dependencies: NumPy,
pytest and h5py.

Note that when developing the library, several strategies have been tested for the evaluation of the function f defined
above, and its optimization. Evaluation of f relies on a Cholesky decomposition of Q; we tested the accuracy of
this implementation over a comprehensive set of large-precision reference values that are available on Zenodo (https:
//doi.org/10.5281/zenodo.3323683). Optimization of f first starts with a few iterations of Brent’s robust algorithm.
Then, the estimate of the minimizer is refined through a few Newton–Raphson iterations.

1.5 Extensions

Several improvements/extensions are planned for this library:

1. Provide a 2D implementation of the contact function.

2. Allow for early stop of the iterations. If, during the iterations, a value of λ is found such that f > 1, then μ²
must be greater than 1, and the ellipsoids certainly do not overlap, which might be sufficient if the user is not
interested in the exact value of the contact function.

3. Return error codes when necessary. Note that this would be an extra safety net, as the optimization procedure is
extremely robust. Indeed, it never failed for the thousands of test cases considered (the function to optimize has
the required convexity over (0, 1)).

This project welcomes contributions. We definitely need help for the following points:

1. Define a “Code of conduct”.

2. Improve the Python wrapper (see Issue XXX).

3. …

1.6 Acknowledgements

The author would like to thank Prof. Chloé Arson (GeorgiaTech Institute of Technology, School of Civil and Environ-
mental Engineering) for stimulating exchanges and research ideas that motivated the exhumation of this project (which
has long been a defunct Java library).

The author would also like to thank Xianda Shen (GeorgiaTech Institute of Technology, School of Civil and Environ-
mental Engineering) for testing on fruity operating systems the installation procedure of this and related libraries. His
dedication led him to valiantly fight long battles with setuptools and brew.

1.4. Implementation 5

https://github.com/sbrisard/pw85
https://sbrisard.github.io/pw85
https://www.boost.org/doc/libs/1_76_0/libs/math/doc/html/math_toolkit/brent_minima.html
https://pybind11.readthedocs.io/en/stable/
https://numpy.org/
https://pytest.org/
https://www.h5py.org/
https://doi.org/10.5281/zenodo.3323683
https://doi.org/10.5281/zenodo.3323683

Documentation of the pw85 library, Release 2.0

6 Chapter 1. Overview

CHAPTER

TWO

INSTALLATION

First of all, clone the repository

$ git clone https://github.com/sbrisard/pw85

2.1 Installing the C++ library

pw85 is a header-only library: there is no installation procedure per se and you can drop the header wherever you like
(as long as it is located in a pw85 subdirectory). To use pw85 in a C++ project, you must include the header

#include <pw85/pw85.hpp>

and inform the compiler of its location.

Note: pw85 depends on Boost::Math (for the implementation of the Brent algorithm). You must pass the relevant
options to the compiler. Typically, these would be -I options. The C++ tutorials provides a CMake example.

To run the tests or build the documentation properly, you need to first build the python bindings (see below).

To further test your installation, build the example in the C++ tutorial.

2.2 Installing the Python bindings

The Python bindings are built with pybind11, which must be installed.

To install the pw85 module, cd into the python subdirectory and run the setup.py script as follows.

First, build the extension:

$ python setup.py build_ext -Ipath/to/boost/math

When the extension is built, installation is down as usual:

$ python setup.py install --user

or (if you intend to edit the project):

$ python setup.py develop --user

To run the tests with Pytest:

7

https://www.boost.org/doc/libs/1_75_0/libs/math/
https://pybind11.readthedocs.io/
https://docs.pytest.org/

Documentation of the pw85 library, Release 2.0

$ python -m pytest tests

(beware, these tests take some time!).

Note: Upon first execution, the test script will attempt to retrieve some precomputed reference data. In case of failure
(e.g. if you sit behind a firewall), this reference file can be downloaded manually at this address: https://zenodo.org/
record/3323683/files/pw85_ref_data-20190712.h5

The file should be placed in the data/ subdirectory, at the root of the project, and should be renamed pw85_ref_data.
h5:

├───data
│ └───pw85_ref_data.h5
├───docs
├───include
│ └───pw85
├───joss
├───legacy
├───python
│ ├───docstrings
│ └───tests
└───sphinx

├───cpp_tutorial
├───implementation
│ └───f_accuracy
└───py_tutorial

2.3 Building the documentation

Note: For the documentation to build properly, the python module must be installed, as it is imported to retrieve the
project metadata.

The documentation of pw85 requires Sphinx. The C++ API docs are built with Doxygen and the Breathe extension to
Sphinx.

To build the HTML version of the docs in the docs subdirectory:

$ cd docs
$ sphinx-build -b html . ../docs

To build the LaTeX version of the docs:

$ cd docs
$ make latex

8 Chapter 2. Installation

https://zenodo.org/record/3323683/files/pw85_ref_data-20190712.h5
https://zenodo.org/record/3323683/files/pw85_ref_data-20190712.h5
https://www.sphinx-doc.org/
https://www.doxygen.nl/
https://breathe.readthedocs.io/
https://www.sphinx-doc.org/

CHAPTER

THREE

TUTORIAL

In this tutorial, we consider two ellipsoids, and check wether or not they overlap.

Ellipsoid E₁ is an oblate spheroid centered at point x₁ = (-0.5, 0.4, -0.7), with equatorial radius a₁ = 10, polar
radius c₁ = 0.1 and polar axis (0, 0, 1).

Ellipsoid E₂ is a prolate spheroid centered at point (0.2, -0.3, 0.4), with equatorial radius a₁ = 0.5, polar radius
c₁ = 5 and polar axis (1, 0, 0).

To carry out the overlap check, we must first create the representation of ellipsoids Eᵢ as quadratic forms Qᵢ (see
Mathematical representation of ellipsoids). Convenience functions are provided to compute the matrix representation
of a spheroid.

Note: In principle, the contact function implemented in PW85 applies to any ellipsoids (with unequal axes). However,
at the time of writing this tutorial (2019-01-01), convenience functions to compute thematrix representation of a general
ellipsoid is not yet implemented. Users must compute the matrices themselves.

We first check for the overlap of E₁ and E₂ using the Python wrapper of pw85. We will then illustrate the C API.

3.1 Python tutorial

The Python module relies on NumPy for passing arrays to the underlying C library. We therefore import both modules:

>>> import numpy as np
>>> import pw85

and define the parameters of the simulation:

>>> x1 = np.array([-0.5, 0.4, -0.7])
>>> n1 = np.array([0., 0., 1.])
>>> a1, c1 = 10, 0.1
>>> x2 = np.array([0.2, -0.3, 0.4])
>>> n2 = np.array([1., 0., 0.])
>>> a2, c2 = 0.5, 5.
>>> r12 = x2-x1

where r₁₂ is the vector that joins the center of the first ellipsoid, x₁, to the center of the second ellipsoid, x₂.

We use the function pw85.spheroid() to create the matrix representations q₁ and q₂ of the two ellipsoids. Note that
these arrays must be preallocated:

9

https://en.wikipedia.org/wiki/Spheroid
https://en.wikipedia.org/wiki/Spheroid
www.numpy.org

Documentation of the pw85 library, Release 2.0

>>> q1 = np.empty((6,), dtype=np.float64)
>>> pw85.spheroid(a1, c1, n1, q1)
>>> q1
array([1.e+02, -0.e+00, -0.e+00, 1.e+02, -0.e+00, 1.e-02])
>>> q2 = np.empty_like(q1)
>>> pw85.spheroid(a2, c2, n2, q2)
>>> q2
array([25. , 0. , 0. , 0.25, 0. , 0.25])

We can now compute the value of the contact function — see the documentation of pw85.contact_function():

>>> out = np.empty((2,), dtype=np.float64)
>>> pw85.contact_function(r12, q1, q2, out)
>>> mu2, lambda_ = out
>>> print('μ² = {}'.format(mu2))
>>> print('λ = {}'.format(lambda_))
μ² = 3.362706040638343
λ = 0.1668589553405904

We find that μ² > 1, hence μ > 1. In other words, both ellipsoids must be swollen in order to bring them in contact:
the ellipsoids do not overlap!

3.1.1 Checking the output

The output of this simulation can readily be checked. First, we can check that q₁ and q₂ indeed represent the ellipsoids
E₁ and E₂. To do so, we first construct the symmetric matrices Q₁ and Q₂ from their upper triangular part

>>> Q1 = np.zeros((3, 3), dtype=np.float64)
>>> i, j = np.triu_indices_from(Q1)
>>> Q1[i, j] = q1
>>> Q1[j, i] = q1
>>> Q1
array([[1.e+02, -0.e+00, -0.e+00],

[-0.e+00, 1.e+02, -0.e+00],
[-0.e+00, -0.e+00, 1.e-02]])

>>> Q2 = np.zeros_like(Q1)
>>> Q2[i, j] = q2
>>> Q2[j, i] = q2
>>> Q2
array([[25. , 0. , 0.],

[0. , 0.25, 0.],
[0. , 0. , 0.25]])

We can now check these matrices for some remarkable points, first for ellipsoid E₁

>>> Q1_inv = np.linalg.inv(Q1)
>>> f1 = lambda x: Q1_inv.dot(x).dot(x)
>>> f1((a1, 0., 0.))
1.0
>>> f1((-a1, 0., 0.))
1.0
>>> f1((0., a1, 0.))
1.0
>>> f1((0., -a1, 0.))

(continues on next page)

10 Chapter 3. Tutorial

Documentation of the pw85 library, Release 2.0

(continued from previous page)

1.0
>>> f1((0., 0., c1))
0.9999999999994884
>>> f1((0., 0., -c1))
0.9999999999994884

then for ellipsoid E₂

>>> Q2_inv = np.linalg.inv(Q2)
>>> f2 = lambda x: Q2_inv.dot(x).dot(x)
>>> f2((c2, 0., 0.))
1.0
>>> f2((-c2, 0., 0.))
1.0
>>> f2((0., a2, 0.))
1.0
>>> f2((0., -a2, 0.))
1.0
>>> f2((0., 0., a2))
1.0
>>> f2((0., 0., -a2))
1.0

Note that in the above tests, we have omitted the centers of ellipsoids E₁ et E₂ (both ellipsoids were translated to the
origin).

We will now verify the corectness of the value found for the scaling factor μ. To do so, we will find the coordinates of
the contact point of the two scaled ellipsoids, and check that the normals to the two ellipsoids at that point coincide.

Although we use formulæ from the Theory section to find the coordinates of the contact point, x₀, it is not essential for
the time being to fully understand this derivation. What really matters is to check that the resulting point x₀ is indeed
the contact point of the two scaled ellipsoids; how the coordinates of this point were found is irrelevant.

From the value of λ returned by the function pw85.contact_function(), we compute Q defined by Eq. (10) in section
Theory, as well as x = Q⁻¹⋅r₁₂

>>> Q = (1-lambda_)*Q1+lambda_*Q2
>>> x = np.linalg.solve(Q, r12)

From which we find x₀, using either Eq. (9a) or Eq. (9b) (and we can check that both give the same result)

>>> x0a = x1+(1-lambda_)*np.dot(Q1, x)
>>> x0a
array([0.16662271, -0.29964969, -0.51687799])
>>> x0b = x2-lambda_*np.dot(Q2, x)
>>> x0b
array([0.16662271, -0.29964969, -0.51687799])

We can now check that x₀ belongs to the two scaled ellipsoids, that we first define, overriding the matrices of the un-
scaled ellipsoids, that are no longer needed. We observe that if ellispoid Eᵢ is scaled by μ, then its matrix representation
Qᵢ is scaled by μ², and its inverse Qᵢ⁻¹ is scaled by μ⁻².

>>> x0 = x0a
>>> Q1 *= mu2
>>> Q2 *= mu2
>>> Q1_inv /= mu2
>>> Q2_inv /= mu2

3.1. Python tutorial 11

Documentation of the pw85 library, Release 2.0

>>> x = x0-x1
>>> Q1_inv.dot(x).dot(x)
1.0000000000058238

>>> x = x0-x2
>>> Q2_inv.dot(x).dot(x)
0.9999999999988334

Therefore x₀ indeed belongs to both ellipsoids. We now compute the normal nᵢ to ellipsoid Eᵢ at point x₀. Since
ellipsoid Eᵢ is defined by the level-set: (x-xᵢ)ᵀ⋅Qᵢ⁻¹⋅(x-xᵢ) = 1, the normal to Eᵢ is given by Qᵢ⁻¹⋅(x-xᵢ)
(which is then suitably normalized)

>>> n1 = Q1_inv.dot(x0-x1)
>>> n1 /= np.linalg.norm(n1)
>>> n1
array([3.64031943e-04, -3.82067448e-04, 9.99999861e-01])

>>> n2 = Q2_inv.dot(x0-x2)
>>> n2 /= np.linalg.norm(n2)
>>> n2
array([-3.64031943e-04, 3.82067448e-04, -9.99999861e-01])

We find that n₁ = -n₂. Therefore, E₁ and E₂ are in external contact. QED

Follow this link to download the above Python script.

3.2 C++ tutorial

The Python interface to PW85 has been kept close to the undelying C++ API. The following C++ program (download
source file) defines the two ellipsoids, then computes μ² and λ:

#include <iostream>
#include <array>

#include "pw85/pw85.hpp"

using Vec = std::array<double, pw85::dim>;
using SymMat = std::array<double, pw85::sym>;

int main() {
Vec x1{-0.5, 0.4, -0.7};
Vec n1{0., 0., 1.};
double a1 = 10.;
double c1 = 0.1;

Vec x2{0.2, -0.3, 0.4};
Vec n2{1., 0., 0.};
double a2 = 0.5;
double c2 = 5.;

Vec r12;
for (int i = 0; i < pw85::dim; i++) r12[i] = x2[i] - x1[i];

SymMat q1, q2;
(continues on next page)

12 Chapter 3. Tutorial

Documentation of the pw85 library, Release 2.0

(continued from previous page)

pw85::spheroid(a1, c1, n1.data(), q1.data());
pw85::spheroid(a2, c2, n2.data(), q2.data());

std::array<double, 2> out;
pw85::contact_function(r12.data(), q1.data(), q2.data(), out.data());
std::cout << "mu^2 = " << out[0] << std::endl;
std::cout << "lambda = " << out[1] << std::endl;

}

A CMakeLists.txt file is provided for the compilation of the tutorial using CMake. You can reuse it in one of your
own projects (download):

cmake_minimum_required(VERSION 3.13)

project("tutorial" LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 17)

add_executable(${PROJECT_NAME} ${PROJECT_NAME}.cpp)

find_library(MATH_LIBRARY m)
if (MATH_LIBRARY)

target_link_libraries(${PROJECT_NAME} INTERFACE ${MATH_LIBRARY})
endif()

find_package(Boost REQUIRED)
target_link_libraries(${PROJECT_NAME} PRIVATE Boost::headers)

target_include_directories(${PROJECT_NAME} PRIVATE "../../include")

cd into the cpp_tutorial subdirectory. The provided example program should be compiled and linked against pw85:

$ mkdir build
$ cd build
$ cmake ..
$ cmake --build . --config Release

An executable called tutorial should be present in the build/Release subdirectory. On execution, it prints the
following lines to stdout:

mu^2 = 3.36271
lambda = 0.166859

3.2. C++ tutorial 13

https://cmake.org/

Documentation of the pw85 library, Release 2.0

14 Chapter 3. Tutorial

CHAPTER

FOUR

THEORY

This chapter provides the theoretical background to the Perram–Wertheim algorithm [PW85]. We use matrices rather
than tensors: a point/vector is therefore defined through the 3×1 column-vector of its coordinates. Likewise, a second-
rank tensor is represented by its 3×3 matrix.

Only the global, cartesian frame is considered here, and there is no ambiguity about the basis to which these column
vectors and square matrices refer.

4.1 Mathematical representation of ellipsoids

Ellipsoids are defined from their center c and a positive-definite quadratic form Q as the set of points m such that:

(1) (m-c)ᵀ⋅Q⁻¹⋅(m-c) ≤ 1.

Q is a symmetric, positive-definite matrix:

(2) Q = ∑ aᵢ² vᵢ⋅vᵢᵀ,
ⁱ

where a₁, a₂, a₃ are the lengths of the principal semi-axes and v₁, v₂, v₃ their directions (unit vectors).

In the PW85 library, Q is represented as a double[6] array q which stores the upper triangular part of Q in row-major
order:

⎡ q[0] q[1] q[2] ⎤
(3) Q = ⎢ q[3] q[4] ⎥.

⎣ sym. q[5] ⎦

4.2 The contact function of two ellipsoids

Let E₁ and E₂ be two ellipsoids, defined by their centers c₁ and c₂ and quadratic forms Q₁ and Q₂, respectively.

For 0 ≤ λ ≤ 1 and a point x, we introduce the function:

(4) F(x, λ) = λ(x-c₁)ᵀ⋅Q₁⁻¹⋅(x-c₁)+(1-λ)(x-c₂)ᵀ⋅Q₂⁻¹⋅(x-c₂).

For fixed λ, F(x, λ) has a unique minimum [PW85] f(λ), and we define:

(5) f(λ) = min{ F(x, λ), x ∈ ℝ³ }, 0 ≤ λ ≤ 1.

15

Documentation of the pw85 library, Release 2.0

Now, the function f has a unique maximum over [0, 1], and the“contact function” F(r₁₂, Q₁, Q₂) of ellipsoids E₁
and E₂ is defined as:

(6) F(r₁₂, Q₁, Q₂) = max{ f(λ), 0 ≤ λ ≤ 1 },

where r₁₂ = c₂-c₁. It can be shown that

• if F(r₁₂, Q₁, Q₂) < 1 then E₁ and E₂ overlap,

• if F(r₁₂, Q₁, Q₂) = 1 then E₁ and E₂ are externally tangent,

• if F(r₁₂, Q₁, Q₂) > 1 then E₁ and E₂ do not overlap.

The contact function therefore provides a criterion to check overlap of two ellipsoids. The PW85 library computes this
value.

4.3 Geometric interpretation

The scalar λ being fixed, we introduce the minimizer x₀(λ) of F(x, λ). The stationarity of F w.r.t to x reads:

(7) ∇F(x₀(λ), λ) = 0,

which leads to:

(8) λQ₁⁻¹⋅[x₀(λ)-c₁] + (1-λ)Q₂⁻¹⋅[x₀(λ)-c₂] = 0,

and can be rearranged:

(9a) x₀(λ)-c₁ = (1-λ)Q₁⋅Q⁻¹⋅r₁₂,
(9b) x₀(λ)-c₂ = -λQ₂⋅Q⁻¹⋅r₁₂,

with:

(10) Q = (1-λ)Q₁ + λQ₂.

It results from the above that:

(11) f(λ) = F(x₀(λ), λ) = λ(1-λ)r₁₂ᵀ⋅Q⁻¹⋅r₁₂.

Maximization of f with respect to λ now delivers the stationarity condition:

∂F
(12) 0 = f'(λ) = ∇F(x₀(λ), λ)⋅x₀'(λ) + ──(x₀(λ), λ).

∂λ

Using Eqs. (4) and (7), it is found that f is minimum for λ = λ₀ such that:

(13) [x₀(λ₀)-c₁]ᵀ⋅Q₁⁻¹⋅[x₀(λ₀)-c₁] = [x₀(λ₀)-c₂]ᵀ⋅Q₂⁻¹⋅[x₀(λ₀)-c₂].

Let μ² be this common value. It trivially results from Eqs. (4) and (13) that μ² = F(x₀(λ₀), λ₀). In other words, μ²
is the value of the contact function.

We are now in a position to give a geometric interpretation of μ. It results from Eq. (13) and the definition of μ that:

(14a) [x₀(λ₀)-c₁]ᵀ⋅(μ²Q₁)⁻¹⋅[x₀(λ₀)-c₁] = 1,

and:

16 Chapter 4. Theory

Documentation of the pw85 library, Release 2.0

(14b) [x₀(λ₀)-c₂]ᵀ⋅(μ²Q₂)⁻¹⋅[x₀(λ₀)-c₂] = 1.

The above equationsmean that x₀(λ₀) belongs to both ellipsoids centered at cⱼ and defined by the symmetric, positive-
definite quadratic form μ²Qⱼ (j = 1, 2). These two ellipsoids are nothing but the initial ellipsoids E₁ and E₂, scaled
by the same factor μ.

Furthermore, Eq. (8) applies for λ = λ₀. Therefore, the normals to the scaled ellipsoids coincide at x₀(λ₀): the two
scaled ellipsoids are externally tangent.

To sum up, μ is the common factor by wich ellipsoids E₁ and E₂ must be scaled in order for them to be externally
tangent at point x₀(λ₀).

4.3. Geometric interpretation 17

Documentation of the pw85 library, Release 2.0

18 Chapter 4. Theory

CHAPTER

FIVE

IMPLEMENTATION OF THE FUNCTION F

In this chapter, we explain how the contact function is computed. From Eq. (12) in chapter Theory, the value of the
contact function is found from the solution λ to equation f'(λ) = 0, where it is recalled that f is defined as follows:

(1) f(λ) = λ(1-λ)r₁₂ᵀ⋅Q⁻¹⋅r₁₂,

with:

(2) Q = (1-λ)Q₁ + λQ₂.

In the present chapter, we discuss two implementations for the evaluation of f. The first implementation uses the
Cholesky decomposition of Q. The second implementation uses a representation of f as a quotient of two polynomials
(rational fraction).

5.1 Implementation #1: using Cholesky decompositions

Since Q is a symmetric, positive definite matrix, we can compute its Cholesky decomposition, which reads as follows:

(3) Q = L⋅Lᵀ,

where L is a lower-triangular matrix. Using this decomposition, it is straightforward to compute s = Q⁻¹⋅r (where
we write r as a shorthand for r₁₂), so that:

(4) f(λ) = λ(1-λ)rᵀ⋅s.

In order to solve f′(λ) = 0 numerically, we use a Newton–Raphson procedure, which requires the first and second
derivatives of f. It is readily found that:

(5) s′ = -Q⁻¹⋅Q′⋅Q⁻¹⋅r = -Q⁻¹⋅u and rᵀ⋅s′ = -rᵀ⋅Q⁻¹⋅u = -sᵀ⋅u,

with u = Q₁₂⋅s and Q₁₂ = Q₂-Q₁. Therefore:

(6) f′(λ) = (1-2λ)rᵀ⋅s - λ(1-λ)sᵀ⋅u.

Similarly, introducing v = Q⁻¹⋅u:

(7) sᵀ⋅u′ = sᵀ⋅Q₁₂⋅s′ = -sᵀ⋅Q₁₂⋅Q⁻¹⋅u = -uᵀ⋅v,

and:

(8) uᵀ⋅s′ = -uᵀ⋅Q⁻¹⋅u = -uᵀ⋅v.

Therefore:

19

https://en.wikipedia.org/wiki/Cholesky_decomposition
https://en.wikipedia.org/wiki/Newton%27s_method

Documentation of the pw85 library, Release 2.0

(9) f″(λ) = -2rᵀ⋅s - 2(1-2λ)sᵀ⋅u + 2λ(1-λ)uᵀ⋅v.

5.2 Implementation #2: using rational functions

We observe that f(λ) is a rational function [see Eq. (1)], and we write:

λ(1-λ)a(λ)
(10) f(λ) = ──────────,

b(λ)

with:

(11a) a(λ) = r₁₂ᵀ⋅adj[(1-λ)Q₁+λQ₂]⋅r₁₂ = a₀ + a₁λ + a₂λ²,

(11b) b(λ) = det[(1-λ)Q₁+λQ₂] = b₀ + b₁λ + b₂λ² + b₃λ³,

where adj(Q) denotes the adjugate matrix of Q (transpose of its cofactor matrix), see e.g Wikipedia.

The coefficients aᵢ and bᵢ are found from the evaluation of a(λ) and b(λ) for specific values of λ:

(12a) a₀ = a(0),

a(1) - a(-1)
(12b) a₁ = ────────────,

2

a(1) + a(-1)
(12c) a₂ = ──────────── - a(0),

2

(12d) b₀ = b(0),

8b(½) b(1) b(-1)
(12e) b₁ = ───── - 2b(0) - ──── - ─────

3 2 6

b(1) + b(-1)
(12f) b₂ = ──────────── - b(0),

2

8b(½) b(-1)
(12g) b₃ = -───── + 2b(0) + b(1) - ─────.

3 3

This requires the implementation of the determinant and the adjugate matrix of a 3×3, symmetric matrix, see
pw85__det_sym() and pw85__xT_adjA_x().

Evaluating the derivative of f with respect to λ is fairly easy. The following Sympy script will do the job:

import sympy

from sympy import Equality, numer, pprint, Symbol

if __name__ == '__main__':
sympy.init_printing(use_latex=False, use_unicode=True)

(continues on next page)

20 Chapter 5. Implementation of the function f

https://en.wikipedia.org/wiki/Adjugate_matrix
https://www.sympy.org

Documentation of the pw85 library, Release 2.0

(continued from previous page)

λ = Symbol('λ')
a = sum(sympy.Symbol('a{}'.format(i))*λ**i for i in range(3))
b = sum(sympy.Symbol('b{}'.format(i))*λ**i for i in range(4))
f = λ*(1-λ)*a/b
f_prime = f.diff(λ).ratsimp()
c = numer(f_prime)
c_dict = c.collect(λ, evaluate=False)
for i in range(sympy.degree(c, gen=λ)+1):

pprint(Equality(Symbol('c{}'.format(i)), c_dict[λ**i]))

It is readily found that:

c(λ)
(13) f′(λ) = ───────,

b(λ)²

where c(λ) is a sixth-order polynomial in λ:

(14) c(λ) = c₀ + c₁λ + c₂λ² + c₃λ³ + c₄λ⁴ + c₅λ⁵ + c₆λ⁶,

with:

(15a) c₀ = a₀b₀,
(15b) c₁ = 2(a₁-a₀)b₀,
(15c) c₂ = -a₀(b₁+b₂) + 3b₀(a₂-a₁) + a₁b₁,
(15d) c₃ = 2[b₁(a₂-a₁) - a₀b₃] - 4a₂b₀,
(15e) c₄ = (a₀-a₁)b₃ + (a₂-a₁)b₂ - 3a₂b₁,
(15f) c₅ = -2a₂b₂,
(15g) c₆ = -a₂b₃,

Solving f'(λ) = 0 for λ is therefore equivalent to finding the unique root of c in the interval 0 ≤ λ ≤ 1. For the
sake of robustness, the bisection method has been implemented (more efficient methods will be implemented in future
versions).

Once λ is found, μ is computed from μ² = f(λ) using Eq. (10).

5.3 Comparison of the two implementations

High precision reference data was generated using the mpmath library. The reference dataset is fully described and
freely downloadable from the Zenodo platform (DOI:10.5281/zenodo.3323683). Accuracy of both implementations
is then evaluated through the following script (download source file):

#include <glib.h>
#include <hdf5.h>
#include <hdf5_hl.h>
#include <pw85.h>
#include <pw85_legacy.h>

void read_dataset_double(hid_t const hid, char const *dset_name, size_t *size,
double **buffer) {

int ndims;
H5LTget_dataset_ndims(hid, dset_name, &ndims);
hsize_t *dim = g_new(hsize_t, ndims);
H5LTget_dataset_info(hid, dset_name, dim, NULL, NULL);

(continues on next page)

5.3. Comparison of the two implementations 21

https://en.wikipedia.org/wiki/Bisection_method
http://mpmath.org/
http://about.zenodo.org/
https://doi.org/10.5281/zenodo.3323683

Documentation of the pw85 library, Release 2.0

(continued from previous page)

*size = 1;
for (size_t i = 0; i < ndims; i++) {

*size *= dim[i];
}
*buffer = g_new(double, *size);
H5LTread_dataset_double(hid, dset_name, *buffer);
g_free(dim);

}

void update_histogram(double act, double exp, size_t num_bins, size_t *hist) {
double const err = fabs((act - exp) / exp);
int prec;
if (err == 0.0) {
prec = num_bins - 1;

} else {
prec = (int)(floor(-log10(err)));
if (prec <= 0) {

prec = 0;
}
if (prec >= num_bins) {

prec = num_bins - 1;
}

}
++hist[prec];

}

int main() {
hid_t const hid = H5Fopen(PW85_REF_DATA_PATH, H5F_ACC_RDONLY, H5P_DEFAULT);

size_t num_directions;
double *directions;
read_dataset_double(hid, "/directions", &num_directions, &directions);
num_directions /= PW85_DIM;

size_t num_lambdas;
double *lambdas;
read_dataset_double(hid, "/lambdas", &num_lambdas, &lambdas);

size_t num_radii;
double *radii;
read_dataset_double(hid, "/radii", &num_radii, &radii);

size_t num_spheroids;
double *spheroids;
read_dataset_double(hid, "/spheroids", &num_spheroids, &spheroids);
num_spheroids /= PW85_SYM;

size_t num_expecteds;
double *expecteds;
read_dataset_double(hid, "/F", &num_expecteds, &expecteds);

double *exp = expecteds;
double params[2 * PW85_SYM + PW85_DIM];

size_t num_bins = 16;
size_t hist1[num_bins];
size_t hist2[num_bins];

(continues on next page)

22 Chapter 5. Implementation of the function f

Documentation of the pw85 library, Release 2.0

(continued from previous page)

for (size_t i = 0; i < num_bins; i++) {
hist1[i] = 0;
hist2[i] = 0;

}
for (size_t i1 = 0; i1 < num_spheroids; i1++) {

memcpy(params + PW85_DIM, spheroids + PW85_SYM * i1,
PW85_SYM * sizeof(double));

for (size_t i2 = 0; i2 < num_spheroids; i2++) {
memcpy(params + PW85_DIM + PW85_SYM, spheroids + PW85_SYM * i2,

PW85_SYM * sizeof(double));
for (size_t i = 0; i < num_directions; i++) {
memcpy(params, directions + PW85_DIM * i, PW85_DIM * sizeof(double));
for (size_t j = 0; j < num_lambdas; j++, exp++) {

double const act1 = -pw85_f_neg(lambdas[j], params);
update_histogram(act1, *exp, num_bins, hist1);
double out[2];
pw85_legacy_f2(lambdas[j], params, params + PW85_DIM,

params + PW85_DIM + PW85_SYM, out);
double const act2 = out[0];
update_histogram(act2, *exp, num_bins, hist2);

}
}

}
}

FILE *f = fopen(HISTOGRAM_PATH, "w");
for (size_t i = 0; i < num_bins; i++) {
fprintf(f, "%d,%g,%g\n", (int)i,

100. * ((double)hist1[i]) / ((double)num_expecteds),
100. * ((double)hist2[i]) / ((double)num_expecteds));

}
fclose(f);

g_free(spheroids);
g_free(radii);
g_free(lambdas);
g_free(directions);
H5Fclose(hid);

return 0;
}

Note: To compute this program, you might need to pass the options -Dpw85_include=…, -Dpw85_lib=… and -
Dpw85_data=… to meson.

Note: The provided script refers to an old implementation of pw85.

We get the histograms shown in Fig. 5.1. These histograms show that Implementation #1 is more accurate than Imple-
mentation #2. The former will therefore be selected as default.

5.3. Comparison of the two implementations 23

Documentation of the pw85 library, Release 2.0

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Precision (number of digits)

0

10

20

30

40

50

60

70

80

Co
un

t

Implementation 1
Implementation 2

Fig. 5.1: Accuracy of the two implementations.

24 Chapter 5. Implementation of the function f

CHAPTER

SIX

OPTIMIZATION OF THE FUNCTION F

It was shown in chapter Theory [see Eq. (6)] that the contact function was defined as the maximum for 0 ≤ λ ≤ 1 of
the function f discussed in chapter Implementation of the function f .

Given that the first and second derivatives of f can be computed explicitely (see section Implementation #1: using
Cholesky decompositions in chapter Implementation of the function f) it would be tempting to use the Newton–Raphson
method to solve f’(λ) iteratively. However, our experiments show that this method performs very poorly in the present
case, because the variations of f can be quite sharp in the neighborhood of λ = 0 or λ = 1. To carry out the otpimization
of f, we therefore proceed in two steps.

In the first step, we use a robust optimization algorithm. We selected here Brent’s method, as implemented in the
Boost::Math library. However, this method delivers a relatively low accuracy of the maxmimizer and the maximum.

Therefore, in the second step, we use a few Newton–Raphson iterations to refine the previously obtained estimates of
the minimizer and minimum of f. In the remainder of this chapter, we describe how these Newton–Raphson iterations
are performed.

Our starting point is Eqs. (9) and (13) in chapter Theory, from which it results that for a given value of λ we can define
two values of μ²: one is provided by Eq. (9a), the other one is given by Eq. (9b) (both in chapter Theory):

(1a) μ₁² = [x₀(λ₀)-c₁]ᵀ⋅Q₁⁻¹⋅[x₀(λ₀)-c₁] = (1-λ)²sᵀ⋅Q₁⋅s,
(1b) μ₂² = [x₀(λ₀)-c₂]ᵀ⋅Q₂⁻¹⋅[x₀(λ₀)-c₂] = λ²sᵀ⋅Q₂⋅s,

where we have introduced s = Q⁻¹⋅r₁₂. We further define the matrix Q₁₂ = Q₂-Q₁, so that:

(2) Q₁ = Q - λQ₁₂ and Q₂ = Q + (1-λ)Q₁₂.

Combining Eqs. (1) and (2) and recalling that Q⋅s = r then delivers the following expressions:

(3a) μ₁² = (1-λ)²rᵀ⋅s - λ(1-λ)²sᵀ⋅u,
(3b) μ₂² = λ²rᵀ⋅s + λ²(1-λ)sᵀ⋅u,

where we have introduced u = Q₁₂⋅s.

The above expressions seem to behave slightly better from a numerical point of view. Our problem is now to find λ
such that μ₁² = μ₂². We therefore define the following residual:

(4) g(λ) = μ₂² - μ₁² = (2λ-1)rᵀ⋅s + λ(1-λ)sᵀ⋅u,

and we need to find λ such that g(λ) = 0. In order to implement Newton–Raphson iterations, we need the expres-
sion of the derivative of the residual. Using results that are presented in section Implementation #1: using Cholesky
decompositions, we readily find that:

(5) g’(λ) = 2rᵀ⋅s + 2(1-2λ)sᵀ⋅u - 2λ(1-λ)uᵀ⋅v.

Eqs. (4) and (5) are then used for the final, refinement step of determination of λ.

25

https://en.wikipedia.org/wiki/Brent%27s_method
https://www.boost.org/doc/libs/1_75_0/libs/math/

Documentation of the pw85 library, Release 2.0

26 Chapter 6. Optimization of the function f

CHAPTER

SEVEN

TESTING THE IMPLEMENTATION OF THE CONTACT FUNCTION

This chapter describes how our implementation of the contact function is tested. The source of the unit tests can be
found in the file src/test_pw85.c. Note that the tests described here are repeated over a large set of tests case,
including very flat and very slender sheroids, for various relative orientations and center-to-center distances.

In the present chapter, we assume that the two ellipsoids (their matrices Q₁ and Q₂ are given), as well as their center-
to-center radius vector r₁₂. Then, a call to pw85::contact_function() delivers an estimate of λ and μ².

We first assert that μ₁² and μ₂² as defined by Eq. (3) in chapter Optimization of the function f are close to the value
returned by pw85::contact_function(). For all the cases considered here, this is true up to a relative error of 10⁻¹⁰.

We also check that f’(λ) = 0, up to an absolute error of Δλf”(λ) where Δλ is the absolute tolerance on λ for the
stopping criterion of the Brent iterations, as defined by the constant pw85::lambda_atol.

27

Documentation of the pw85 library, Release 2.0

28 Chapter 7. Testing the implementation of the contact function

CHAPTER

EIGHT

THE C++ API

Note: functions whose name is prefixed with an underscore should be considered as “private”: these functions are
exposed for testing purposes. They should not be used, since they are susceptible of incompatible changes (or even
removal) in future versions.

8.1 Representation of vectors and matrices

An ellipsoid is defined from its center c (a 3×1, column-vector) and quadratic form Q (a 3×3, symmetric, positive
definite matrix) as the set of points m such that:

(m-c)ᵀ⋅Q⁻¹⋅(m-c) ≤ 1.

In this module, objects referred to as “vectors” are double[3] arrays of coordinates. In other words, the representation
of the vector x is the double[3] array x such that:

⎡ x[0] ⎤
x = ⎢ x[1] ⎥.

⎣ x[2] ⎦

Objects referred to as “symmetric matrices” (or “quadratic forms”) are of type double[6]. Such arrays list in row-
major order the coefficients of the triangular upper part. In other words, the representation of a the symmetric matrix
A is the double[6] array a such that:

⎡ a[0] a[1] a[2] ⎤
A = ⎢ a[3] a[4] ⎥.

⎣ sym. a[5] ⎦

8.2 API

namespace pw85

29

Documentation of the pw85 library, Release 2.0

Functions

void _cholesky_decomp(double const *a, double *l)
Compute the Cholesky decomposition of a symmetric, positive matrix.

Let A be a symmetric, positive matrix, defined by the double[6] array a. This function computes the
lower-triangular matrix L, defined by the double[6] array l, such that Lᵀ⋅L = A.

The array l must be pre-allocated; it is modified by this function. Note that storage of the coefficients of L
is as follows

⎡ l[0] 0 0 ⎤
L = ⎢ l[1] l[3] 0 ⎥.

⎣ l[2] l[4] l[5] ⎦

void _cholesky_solve(const double *l, const double *b, double *x)
Compute the solution to a previously Cholesky decomposed linear system.

Let L be a lower-triangular matrix, defined by the double[6] array l (see pw85::_cholesky_decomp() for
ordering of the coefficients). This function solves (by substitution) the linear system Lᵀ⋅L⋅x = b, where the
vectors x and b are specified through their double[3] array of coordinates; x is modified by this function.

void spheroid(double a, double c, const double *n, double *q)
Compute the quadratic form associated to a spheroid.

The spheroid is defined by its equatorial radius a, its polar radius c and the direction of its axis of revolution,
n (unit-vector, double[3] array).

q is the representation of a symmetric matrix as a double[6] array. It is modified in-place.

double f_neg(double lambda, const double *r12, const double *q1, const double *q2)
Return the value of the opposite of the function f defined as (see Theory).

f(λ) = λ
(
1− λ

)
rT12 ·Q−1 · r12,

with

Q =
(
1− λ

)
Q1 + λQ2,

where ellipsoids 1 and 2 are defined as the sets of pointsm (column-vector) such that

(
m− ci

)
·Q−1

i ·
(
m− ci

)
≤ 1.

In the above inequality, ci is the center; r12 = c2 − c1 is the center-to-center radius-vector, represented by
the double[3] array r12. The symmetric, positive-definite matrices Q1 and Q2 are specified through the
double[6] arrays q1 and q2.

The value of λ is specified through the parameter lambda.

This function returns the value of −f(λ) (the “minus” sign comes from the fact that we seek the maximum
of f , or the minimum of −f).

This implementation uses Cholesky decompositions*.

30 Chapter 8. The C++ API

Documentation of the pw85 library, Release 2.0

void _residual(double lambda, const double *r12, const double *q1, const double *q2, double *out)
Compute the residual g(λ) = µ2

2 − µ2
1.

See Optimization of the function f for the definition of g. The value of λ is specified through the parameter
lambda. See contact_function() for the definition of the parameters r12, q1 and q2.

The preallocated double[3] array out is updated as follows: out[0]= f(λ), out[1]= g(λ) and out[2]=
g′(λ).

This function is used in function pw85::contact_function() for the final Newton–Raphson refinement
step.

int contact_function(const double *r12, const double *q1, const double *q2, double *out)
Compute the value of the contact function of two ellipsoids.

The center-to-center radius-vector r12 is specified by the double[3] array r12. The symmetric, positive-
definite matrices Q1 and Q2 that define the two ellipsoids are specified through the double[6] arrays q1
and q2.

This function computes the value of µ2, defined as

µ2 = max
0≤λ≤1

{
λ
(
1− λ

)
rT12 ·

[(
1− λ

)
Q1 + λQ2

]−1 · r12
}
,

and the maximizer λ, see Theory . Both values are stored in the preallocated double[2] array out: out[0]
= µ2 and out[1] = λ.

µ is the common factor by which the two ellipsoids must be scaled (their centers being fixed) in order to
be tangentially in contact.

This function returns 0.

Todo: This function should return an error code.

Variables

constexpr size_t dim = 3
The dimension of the physical space (3).

constexpr size_t sym = 6
The dimension of the space of symmetric matrices (6).

constexpr double lambda_atol = 1e-6
The absolute tolerance for the stopping criterion of Brent’s method (in function contact_function()).

constexpr size_t max_iter = 25
The maximum number of iterations of Brent’s method (in function contact_function()).

constexpr size_t nr_iter = 3
The total number of iterations of the Newton–Raphson refinement phase (in function contact_function()).

8.2. API 31

Documentation of the pw85 library, Release 2.0

namespace metadata

Variables

constexpr std::string_view author = {"S. Brisard"}

constexpr std::string_view description = {"Implementation of the \"contact function\" defined by
Perram and Wertheim (J. Comp. Phys. 58(3), 409-416, DOI:10.1016/0021-9991(85)90171-8) for two
ellipsoids."}

constexpr std::string_view author_email = {"sebastien.brisard@univ-eiffel.fr"}

constexpr std::string_view license = {"BSD 3-Clause License"}

constexpr std::string_view name = {"pw85"}

constexpr std::string_view url = {"https://github.com/sbrisard/pw85"}

constexpr std::string_view version = {"2.0"}

constexpr std::string_view year = {"2021"}

32 Chapter 8. The C++ API

CHAPTER

NINE

THE PYTHON API

pypw85._cholesky_decomp(a: numpy.ndarray[numpy.float64], l: numpy.ndarray[numpy.float64])→ None
Compute the Cholesky decomposition of a symmetric, positive matrix.

Let A be a symmetric, positive matrix, defined by the double[6] array a. This function computes the lower-
triangular matrix L, defined by the double[6] array l, such that Lᵀ⋅L = A.

The array l must be pre-allocated; it is modified by this function. Note that storage of the coefficients of L is as
follows:

⎡ l[0] 0 0 ⎤
L = ⎢ l[1] l[3] 0 ⎥.

⎣ l[2] l[4] l[5] ⎦

This function is exposed for testing purposes only.

pypw85._cholesky_solve(l: numpy.ndarray[numpy.float64], b: numpy.ndarray[numpy.float64], x:
numpy.ndarray[numpy.float64])→ None

Compute the solution to a previously Cholesky decomposed linear system.

Let L be a lower-triangular matrix, defined by the double[6] array l (see _cholesky_decomp() for ordering
of the coefficients). This function solves (by substitution) the linear system Lᵀ⋅L⋅x = b, where the vectors x
and b are specified through their double[3] array of coordinates; x is modified by this function.

This function is exposed for testing purposes only.

pypw85.contact_function(r12: numpy.ndarray[numpy.float64], q1: numpy.ndarray[numpy.float64], q2:
numpy.ndarray[numpy.float64], out: numpy.ndarray[numpy.float64])→ int

Compute the value of the contact function of two ellipsoids.

See f_neg() for the meaning of the parameters r12, q1 and q2.

This function computes the value of μ², defined as:

μ² = max{λ(1-λ)r₁₂ᵀ⋅[(1-λ)Q₁ + λQ₂]⁻¹⋅r₁₂, 0 ≤ λ ≤ 1}

and the maximizer λ, see Theory. Both values are stored in the preallocated double[2] array out: out[0] =
μ² and out[1] = λ.

μ is the common factor by which the two ellipsoids must be scaled (their centers being fixed) in order to be
tangentially in contact.

This function returns 0.

Todo: This function should return an error code.

33

Documentation of the pw85 library, Release 2.0

pypw85.f_neg(lambda: float, r12: numpy.ndarray[numpy.float64], q1: numpy.ndarray[numpy.float64], q2:
numpy.ndarray[numpy.float64])→ float

Return the value of the opposite of the function f defined as (see Theory):

f(λ) = λ(1-λ)r₁₂ᵀ⋅Q⁻¹⋅r₁₂,

with:

Q = (1-λ)Q₁ + λQ₂,

where ellipsoids 1 and 2 are defined as the sets of points m (column-vector) such that:

(m-cᵢ)ᵀ⋅Qᵢ⁻¹⋅(m-cᵢ) ≤ 1.

In the above inequality, cᵢ is the center; r₁₂ = c₂ - c₁ is the center-to-center radius-vector, represented by the
double[3] array r12. The symmetric, positive-definite matrices Q₁ and Q₂ are specified through the double[6]
arrays q1 and q2.

The value of λ is specified through the parameter lambda.

This function returns the value of -f(λ) (the “minus” sign comes from the fact that we seek the maximum of f,
or the minimum of (-f).

This implementation uses Cholesky decompositions.

pypw85.spheroid(a: float, c: float, n: numpy.ndarray[numpy.float64], q: numpy.ndarray[numpy.float64])→ None
Compute the quadratic form associated to a spheroid.

The spheroid is defined by its equatorial radius a, its polar radius c and the direction of its axis of revolution, n
(unit-vector, double[3] array).

q is the representation of a symmetric matrix as a double[6] array. It is modified in-place.

34 Chapter 9. The python API

BIBLIOGRAPHY

[ABH18] Anoukou, K., Brenner, R., Hong, F., Pellerin, M., & Danas, K. (2018). Random distribution of polydisperse
ellipsoidal inclusions and homogenization estimates for porous elastic materials. Computers & Structures,
210, 87–101. https://doi.org/10.1016/j.compstruc.2018.08.006

[BL13] Brisard, S., & Levitz, P. (2013). Small-angle scattering of dense, polydisperse granular porous media:
Computation free of size effects. Physical Review E, 87(1), 013305. https://doi.org/10.1103/PhysRevE.
87.013305

[CYP07] Chen, X.-D., Yong, J.-H., Paul, J.-C., & Sun, J. (2007). Intersection Testing between an Ellipsoid and an
Algebraic Surface. 2007 10th IEEE International Conference on Computer-Aided Design and Computer
Graphics, 43–46. https://doi.org/10.1109/CADCG.2007.4407853

[DTS05] Donev, A., Torquato, S., & Stillinger, F. H. (2005). Neighbor list collision-driven molecular dynamics
simulation for nonspherical hard particles. I. Algorithmic details. Journal of Computational Physics, 202(2),
737–764. https://doi.org/10.1016/j.jcp.2004.08.014

[DTS05a] Donev, A., Torquato, S., & Stillinger, F. H. (2005). Neighbor list collision-driven molecular dynamics sim-
ulation for nonspherical hard particles.: II. Applications to ellipses and ellipsoids. Journal of Computational
Physics, 202(2), 765–793. https://doi.org/10.1016/j.jcp.2004.08.025

[PW85] Perram, J. W., & Wertheim, M. S. (1985). Statistical mechanics of hard ellipsoids. I. Overlap algo-
rithm and the contact function. Journal of Computational Physics, 58(3), 409–416. https://doi.org/10.1016/
0021-9991(85)90171-8

[VB72] Vieillard‐Baron, J. (1972). Phase Transitions of the Classical Hard‐Ellipse System. The Journal of Chemical
Physics, 56(10), 4729–4744. https://doi.org/doi:10.1063/1.1676946

[WWK01] Wang, W., Wang, J., & Kim, M.-S. (2001). An algebraic condition for the separation of two ellipsoids.
Computer Aided Geometric Design, 18(6), 531–539. https://doi.org/10.1016/S0167-8396(01)00049-8

35

https://doi.org/10.1016/j.compstruc.2018.08.006
https://doi.org/10.1103/PhysRevE.87.013305
https://doi.org/10.1103/PhysRevE.87.013305
https://doi.org/10.1109/CADCG.2007.4407853
https://doi.org/10.1016/j.jcp.2004.08.014
https://doi.org/10.1016/j.jcp.2004.08.025
https://doi.org/10.1016/0021-9991(85)90171-8
https://doi.org/10.1016/0021-9991(85)90171-8
https://doi.org/doi:10.1063/1.1676946
https://doi.org/10.1016/S0167-8396(01)00049-8

Documentation of the pw85 library, Release 2.0

36 Bibliography

PYTHON MODULE INDEX

p
pypw85, 33

37

	Overview
	Introduction
	The contact function of Perram and Wertheim [PW85]
	Features of the overlap test
	Robustness with respect to floating-point errors
	Application to Monte-Carlo simulations

	Implementation
	Extensions
	Acknowledgements

	Installation
	Installing the C++ library
	Installing the Python bindings
	Building the documentation

	Tutorial
	Python tutorial
	Checking the output

	C++ tutorial

	Theory
	Mathematical representation of ellipsoids
	The contact function of two ellipsoids
	Geometric interpretation

	Implementation of the function f
	Implementation #1: using Cholesky decompositions
	Implementation #2: using rational functions
	Comparison of the two implementations

	Optimization of the function f
	Testing the implementation of the contact function
	The C++ API
	Representation of vectors and matrices
	API

	The python API
	Bibliography
	Python Module Index

