Documentation of the pw85 library
Release 2.0

S. Brisard

May 24, 2021

CONTENTS

1 Overview
1.1 Introduction i e e e e e e e e e e e e e e e e e e
1.2 The contact function of Perram and Wertheim [PW85]
1.3 Featuresof the overlap test o i i i e e e e e e e
1.4 TImplementation v v v i e
1.5 EXensions o i e e e e e e e e e e e e e
1.6 Acknowledgements L e e e e e e
2 Installation
2.1 Installing the C++1library o e e e e e
2.2 Installing the Python bindings
2.3 Building the documentation e e
3 Tutorial
3.1 Pythontutorial e e e e e
3.2 CHttutorial ... e e e e e e
4 Theory
4.1 Mathematical representation of ellipsoids L
4.2 The contact function of two ellipsoids L.
4.3 Geometric interpretation v i e
5 Implementation of the function f
5.1 Implementation #1: using Cholesky decompositions
5.2 Implementation #2: using rational functions
5.3 Comparison of the two implementations
6 Optimization of the function f
7 Testing the implementation of the contact function
8 The C++ API
8.1 Representation of vectors and matrices Ll
8.2 API . e
9 The python API
Bibliography
Python Module Index

G Ul b Www

[ceRR BN

© ©

15
15
15
16

19
19
20
21

25

27

29
29
29

33

35

37

Abstract

This library implements the “contact function” defined by Perram and Wertheim (J. Comp. Phys. 58(3), 409-416,
DOI:10.1016/0021-9991(85)90171-8) for two ellipsoids. Given two ellipsoids, this function returns the square of the
common factor by which both ellipsoids must be scaled (their centers being fixed) in order to be tangentially in contact.

This library is released under a BSD 3-Clause License.

https://doi.org/10.1016/0021-9991(85)90171-8

Documentation of the pw85 library, Release 2.0

2 CONTENTS

CHAPTER

ONE

OVERVIEW

1.1 Introduction

It is quite common in materials science to reason on assemblies of ellipsoids as model materials. Although simplified
upscaling mean-field/effective-field theories exist for such microstructures, they often fail to capture the finest details
of the microstructure, such as orientation correlations between anisotropic inclusions, or particle-size distributions. In
order to account for such microstructural details, one must resort to so-called full-field numerical simulations (using
dedicated tools such as Damask or Janus, for example).

Full-field simulations require realizations of the microstructure. For composites made of ellipsoidal inclusions embed-
ded in a (homogeneous) matrix, this requires to be able to generate assemblies of (non-overlapping) ellipsoids. The
basic ingredient of such microstructure simulations is of course the overlap test of two inclusions.

Checking for the overlap (or the absence of it) of two ellipsoids is not as trivial as checking for the overlap of two
spheres. Several criteria can be found in the literature [VB72]; [PW85]; [WWKO01]; [CYP07]; [ABH18]. We propose
an implementation of the contact function of Perram and Wertheim [PW85].

The present chapter is organised as follows. We first give a brief description of the contact function. Then, we discuss
two essential features of this function: robustness with respect to floating-point errors and suitability for application to
Monte-Carlo simulations. Finally, we give a brief description of the pw85 library.

1.2 The contact function of Perram and Wertheim [PW85]

The origin being fixed, points are represented by the 3x1 column-vector of their coordinates in a global cartesian frame.
Fori = 1, 2,E:i c R3 denotes the following ellipsoid:

’(1) Ei = {m € R3: (m-ci)7:Qi-t-(m-ci) = 1},

where ci € R3 is the center of Ei, and Q: is a positive definite matrix. Perram and Wertheim define the following
function:

’(2) f(A; riz, Qi, Q2) = A(1-A)r127-Q"1-ra1z2,

where ® < A =< lisascalar,Q = (1-A)Q: + AQz,and r12 = c2z-c1 denotes the center-to-center radius-vector. The
contact function 2 (Ex, E2) of the two ellipsoids is defined as the unique maximum of f over (0, 1):

’(3) u2 = max{f(A; riz, Qi, Q2), 0 = A = 1}.

It turns out that the contact function has a simple geometric interpretation. Indeed, y is the quantity by which each of
the two ellipsoids E: and E» must be scaled to bring them in contact. Therefore, an overlap test could be defined as
follows

https://damask.mpie.de/
https://github.com/sbrisard/janus

Documentation of the pw85 library, Release 2.0

* W2(Ex, E2) < 1: the two ellipsoids overlap,
* W2(E:, Ez2) > 1: the two ellipsoids do not overlap,
* W2(Ex, E2) = 1: the two ellipsoids are tangent.

Despite its apparent complexity, this overlap test has two nice features that are discussed below.

1.3 Features of the overlap test

1.3.1 Robustness with respect to floating-point errors

All overlap tests amount to checking for the sign of a real quantity (E1, E2) that depends on the two ellipsoids E1
and E2. The ellipsoids do not overlap when &(Ex, E2) < 0; they do overlap when &(E., Ez) > 0. Finally, we
usually have (Ex, Ez2) = 0 when E: and E- are in tangent contact (but it is important to note that, depending on the
overlap criterion, the converse is not necessarily true).

In a finite precision setting, we are bound to make wrong decisions about pairs of ellipsoids that are such that & is
small. Indeed, let us consider a pair of ellipsoids (E1, E:) for which the true value of é, e (E1, E:2), is close to the
machine epsilon. Then, the numerical estimate of &, . (Ex, E:), is also (hopefully) a very small value. However,
whether . (E1, E2) is the same sign as & (Ex, E2) (and therefore delivers the correct answer regarding overlap) is
uncertain, owing to accumulation of round-off errors. Such misclassifications are acceptable provided that they occur
for ellipsoids that are close (nearly in tangent contact). The overlap criterion will be deemed robust if it is such that
®(E1, E2) is small for nearly tangent ellipsoids only. This is obviously true of the overlap test based on the contact
function of Perram and Wertheim. Note that some of the overlap tests that can be found in the literature do not exhibit
such robustness.

1.3.2 Application to Monte-Carlo simulations

Generating compact assemblies of hard particles is a notoriously difficult task. Event-driven simulations [DTS05];
[DTS05a] are often used, but require a lot of book-keeping. A comparatively simpler approach [BL13] is similar to
atomistic simulations with a non-physical energy. More precisely, starting from an initial configuration where the n
ellipsoids E1, .., En do overlap, a simulated annealing strategy is adopted to minimize the quantity U(E1, .., En)
defined as follows:

(4) U(E1, .., En) = Y u(Ei, Ej),
l=<i<js=sn

where u(Ex, E:) denotes an ad-hoc pair-wise (non-physical) potential, that should vanish when the two ellipsoids
do not overlap, and be “more positive when the overlap is greater” (this sentense being deliberately kept vague). A
possible choice for u is the following:

(5) u(Ex, E2) = max{0, p-*(E., E2)}.

Monte-Carlo simulations using previous implementations of the contact function of Perram and Wertheim and the above
definition of the energy of the system were successfully used to produce extremely compact assemblies of ellipsoids
[BL13].

4 Chapter 1. Overview

Documentation of the pw85 library, Release 2.0

1.4 Implementation

pw85 is a C library that implements the contact function of Perram and Wertheim. It is released under a BSD-3 license,
and is available at https://github.com/sbrisard/pw85. It is fully documented at https://sbrisard.github.io/pw85.

The core library depends on The boost::mathGNU (for its implementation of the Brent algorithm).

The API is extremely simple; in particular it defines no custom objects: parameters of all functions are either simple
types (size_t, double) or arrays. Note that all arrays must be pre-allocated and are modified in-place. This minimizes
the risk of creating memory leaks when implementing wrappers for higher-level (garbage-collected) languages.

A Python wrapper (based on pybind11) is also provided. It has the following (fairly standard) dependencies: NumPy,
pytest and h5py.

Note that when developing the library, several strategies have been tested for the evaluation of the function f defined
above, and its optimization. Evaluation of f relies on a Cholesky decomposition of Q; we tested the accuracy of
this implementation over a comprehensive set of large-precision reference values that are available on Zenodo (https:
//doi.org/10.5281/zenodo.3323683). Optimization of f first starts with a few iterations of Brent’s robust algorithm.
Then, the estimate of the minimizer is refined through a few Newton—Raphson iterations.

1.5 Extensions

Several improvements/extensions are planned for this library:
1. Provide a 2D implementation of the contact function.

2. Allow for early stop of the iterations. If, during the iterations, a value of A is found such that f > 1, then u2
must be greater than 1, and the ellipsoids certainly do not overlap, which might be sufficient if the user is not
interested in the exact value of the contact function.

3. Return error codes when necessary. Note that this would be an extra safety net, as the optimization procedure is
extremely robust. Indeed, it never failed for the thousands of test cases considered (the function to optimize has
the required convexity over (0, 1)).

This project welcomes contributions. We definitely need help for the following points:
1. Define a “Code of conduct”.
2. Improve the Python wrapper (see Issue XXX).
3. ..

1.6 Acknowledgements

The author would like to thank Prof. Chloé Arson (GeorgiaTech Institute of Technology, School of Civil and Environ-
mental Engineering) for stimulating exchanges and research ideas that motivated the exhumation of this project (which
has long been a defunct Java library).

The author would also like to thank Xianda Shen (GeorgiaTech Institute of Technology, School of Civil and Environ-
mental Engineering) for testing on fruity operating systems the installation procedure of this and related libraries. His
dedication led him to valiantly fight long battles with setuptools and brew.

1.4. Implementation 5

https://github.com/sbrisard/pw85
https://sbrisard.github.io/pw85
https://www.boost.org/doc/libs/1_76_0/libs/math/doc/html/math_toolkit/brent_minima.html
https://pybind11.readthedocs.io/en/stable/
https://numpy.org/
https://pytest.org/
https://www.h5py.org/
https://doi.org/10.5281/zenodo.3323683
https://doi.org/10.5281/zenodo.3323683

Documentation of the pw85 library, Release 2.0

6 Chapter 1. Overview

CHAPTER

TWO

INSTALLATION

First of all, clone the repository

’$ git clone https://github.com/sbrisard/pw85

2.1 Installing the C++ library

pw85 is a header-only library: there is no installation procedure per se and you can drop the header wherever you like
(as long as it is located in a pw85 subdirectory). To use pw85 in a C++ project, you must include the header

’#include <pw85/pw85. hpp>

and inform the compiler of its location.

Note: pw85 depends on Boost::Math (for the implementation of the Brent algorithm). You must pass the relevant
options to the compiler. Typically, these would be -I options. The C++ tutorials provides a CMake example.

To run the tests or build the documentation properly, you need to first build the python bindings (see below).

To further test your installation, build the example in the C++ tutorial.

2.2 Installing the Python bindings

The Python bindings are built with pybind11, which must be installed.
To install the pw85 module, cd into the python subdirectory and run the setup.py script as follows.

First, build the extension:

’$ python setup.py build ext -Ipath/to/boost/math

When the extension is built, installation is down as usual:

’$ python setup.py install --user

or (if you intend to edit the project):

’$ python setup.py develop --user

To run the tests with Pytest:

https://www.boost.org/doc/libs/1_75_0/libs/math/
https://pybind11.readthedocs.io/
https://docs.pytest.org/

Documentation of the pw85 library, Release 2.0

$ python -m pytest tests

(beware, these tests take some time!).

Note: Upon first execution, the test script will attempt to retrieve some precomputed reference data. In case of failure
(e.g. if you sit behind a firewall), this reference file can be downloaded manually at this address: https://zenodo.org/
record/3323683/files/pw85_ref_data-20190712.h5

The file should be placed in the data/ subdirectory, at the root of the project, and should be renamed pw85 ref data.
h5:

—data

| L—pw85_ref_data.h5
—docs

F—include

| L—pw85

F—joss

F—Tlegacy

F—python

| F—docstrings

| L—tests

L—sphinx
F—cpp_tutorial
—implementation
| L—F accuracy
L py tutorial

2.3 Building the documentation

Note: For the documentation to build properly, the python module must be installed, as it is imported to retrieve the
project metadata.

The documentation of pw85 requires Sphinx. The C++ API docs are built with Doxygen and the Breathe extension to
Sphinx.

To build the HTML version of the docs in the docs subdirectory:

$ cd docs
$ sphinx-build -b html . ../docs

To build the LaTeX version of the docs:

$ cd docs
$ make latex

8 Chapter 2. Installation

https://zenodo.org/record/3323683/files/pw85_ref_data-20190712.h5
https://zenodo.org/record/3323683/files/pw85_ref_data-20190712.h5
https://www.sphinx-doc.org/
https://www.doxygen.nl/
https://breathe.readthedocs.io/
https://www.sphinx-doc.org/

CHAPTER

THREE

TUTORIAL

In this tutorial, we consider two ellipsoids, and check wether or not they overlap.

Ellipsoid E: is an oblate spheroid centered at point x1 = (-0.5, 0.4, -0.7), with equatorial radius a: = 10, polar
radius c1 = 0.1 and polar axis (0, 0, 1).

Ellipsoid E: is a prolate spheroid centered at point (0.2, -0.3, 0.4), with equatorial radius a1 = 0.5, polar radius
¢1 = 5and polar axis (1, 0, 0).

To carry out the overlap check, we must first create the representation of ellipsoids E: as quadratic forms Qi (see
Mathematical representation of ellipsoids). Convenience functions are provided to compute the matrix representation
of a spheroid.

Note: In principle, the contact function implemented in PW85 applies to any ellipsoids (with unequal axes). However,
at the time of writing this tutorial (2019-01-01), convenience functions to compute the matrix representation of a general
ellipsoid is not yet implemented. Users must compute the matrices themselves.

We first check for the overlap of E: and E2 using the Python wrapper of pw85. We will then illustrate the C API.

3.1 Python tutorial

The Python module relies on NumPy for passing arrays to the underlying C library. We therefore import both modules:

>>> import numpy as np
>>> import pw85

and define the parameters of the simulation:

>>> x1 = np.array([-0.5, 0.4, -0.7])
>>> nl np.array([0., 0., 1.])

>>> al, cl =10, 0.1

>>> x2 = np.array([0.2, -0.3, 0.4])
>>> n2 = np.array([1l., 0., 0.])

>>> a2, c2 = 0.5, 5.

>>> rl2 = x2-x1

where r12 is the vector that joins the center of the first ellipsoid, x1, to the center of the second ellipsoid, x2.

We use the function pw85. spheroid() to create the matrix representations q: and q: of the two ellipsoids. Note that
these arrays must be preallocated:

https://en.wikipedia.org/wiki/Spheroid
https://en.wikipedia.org/wiki/Spheroid
www.numpy.org

Documentation of the pw85 library, Release 2.0

>>> ql = np.empty((6,), dtype=np.float64)

>>> pw85.spheroid(al, cl, nl, ql)

>>> ql

array([1l.e+02, -0.e+00, -0.e+00, 1l.e+02, -0.e+00, 1.e-02])
>>> g2 = np.empty like(ql)

>>> pw85.spheroid(a2, c2, n2, q2)

>>> 2

array([25. , ©. , 0. , 0.25, 0. , 0.25])

We can now compute the value of the contact function — see the documentation of pw85. contact function():

>>> out = np.empty((2,), dtype=np.float64)
>>> pw85.contact function(rl2, gl, g2, out)

>>> mu2, lambda = out
>>> print('p? = ".format(mu2))
>>> print('A = '.format(lambda))

u? = 3.362706040638343
A = 0.1668589553405904

We find that p2 > 1, hence p > 1. In other words, both ellipsoids must be swollen in order to bring them in contact:
the ellipsoids do not overlap!

3.1.1 Checking the output

The output of this simulation can readily be checked. First, we can check that q: and g2 indeed represent the ellipsoids
E: and E:. To do so, we first construct the symmetric matrices Q: and Q2 from their upper triangular part

>>> Q1 = np.zeros((3, 3), dtype=np.float64)

>>> i, j = np.triu indices from(Ql)

>>> Q1[i, j] = ql

>>> Q1[j, 1] = ql

>>> Q1

array([[1l.e+02, -0.e+00, -0.e+00],
[-0.e+00, 1.e+02, -0.e+00],
[-0.e+00, -0.e+00, 1.e-02]1)

>>> Q2 = np.zeros like(Ql)
>>> Q2[1, j1 = q2
>>> Q2[j, 1] = g2

>>> Q2

array([[25. , ©0. , 0. 1,
[0. , 0.25, 0. 1],
[6. , 0. , 0.25]1)

We can now check these matrices for some remarkable points, first for ellipsoid E1

>>> Q1 inv = np.linalg.inv(Ql)
>>> fl = lambda x: Q1 _inv.dot(x).dot(x)
>>> fl((al, 0., 0.))

1.0
>>> fl((-al, 0., 0.))
1.0
>>> f1((0., al, 0.))
1.0

>>> f1((0., -al, 0.))

(continues on next page)

10 Chapter 3. Tutorial

Documentation of the pw85 library, Release 2.0

(continued from previous page)

1.0

>>> f1((0., 0., cl))
0.9999999999994884
>>> f1((0., 0., -cl))
0.9999999999994884

then for ellipsoid E2

>>> Q2 _inv = np.linalg.inv(Q2)
>>> f2 = lambda x: Q2 _inv.dot(x).dot(x)
>>> f2((c2, 0., 0.))

1.0
>>> f2((-c2, 0., 0.))
1.0
>>> f2((0., a2, 0.))
1.0
>>> f2((0., -a2, 0.))
1.0
>>> f2((0., 0., a2))
1.0
>>> f2((0., 0., -a2))
1.0

Note that in the above tests, we have omitted the centers of ellipsoids E1 et Ez (both ellipsoids were translated to the
origin).

We will now verify the corectness of the value found for the scaling factor p. To do so, we will find the coordinates of
the contact point of the two scaled ellipsoids, and check that the normals to the two ellipsoids at that point coincide.

Although we use formule from the Theory section to find the coordinates of the contact point, xo, it is not essential for
the time being to fully understand this derivation. What really matters is to check that the resulting point xo is indeed
the contact point of the two scaled ellipsoids; how the coordinates of this point were found is irrelevant.

From the value of A returned by the function pw85.contact function(), we compute Q defined by Eq. (10) in section
Theory, as wellas x = Q=*+ri2

>>> Q
>>> X

(1-lambda)*Ql+lambda_ *Q2
np.linalg.solve(Q, r12)

From which we find xe, using either Eq. (9a) or Eq. (9b) (and we can check that both give the same result)

>>> x0a = x1+(1-lambda)*np.dot(Ql, x)

>>> x0a

array([0.16662271, -0.29964969, -0.51687799])
>>> x0b x2-lambda_*np.dot(Q2, x)

>>> x0b

array([0.16662271, -0.29964969, -0.51687799])

We can now check that xo belongs to the two scaled ellipsoids, that we first define, overriding the matrices of the un-
scaled ellipsoids, that are no longer needed. We observe that if ellispoid E is scaled by , then its matrix representation
Qi is scaled by p?, and its inverse Qi - is scaled by p-2.

>>> x0 = x0a
>>> Q1 *= mu2
>>> Q2 *= mu2
>>> Q1_inv /= mu2
>>> Q2_inv /= mu2

3.1. Python tutorial 11

Documentation of the pw85 library, Release 2.0

>>> X = X0-x1
>>> Q1 _inv.dot(x).dot(x)
1.0000000000058238

>>> X = X0-x2
>>> Q2_inv.dot(x).dot(x)
0.9999999999988334

Therefore xo indeed belongs to both ellipsoids. We now compute the normal n: to ellipsoid E: at point xe. Since
ellipsoid E: is defined by the level-set: (x-xi)7:Qi-!:(x-xi) = 1, the normal to E: is given by Qi~-*- (x-xi)
(which is then suitably normalized)

>>> nl = Q1 _inv.dot(x0-x1)

>>> nl /= np.linalg.norm(nl)

>>> nl

array([3.64031943e-04, -3.82067448e-04, 9.99999861e-011])

>>> n2 = Q2 _inv.dot(x0-x2)

>>> n2 /= np.linalg.norm(n2)

>>> n2

array([-3.64031943e-04, 3.82067448e-04, -9.99999861e-01])

We find that n1 = -n2. Therefore, Ex and E: are in external contact. QED

Follow this link to download the above Python script.

3.2 C++ tutorial

The Python interface to PW85 has been kept close to the undelying C++ API. The following C++ program (download
source file) defines the two ellipsoids, then computes 2 and A:

#include <iostream>
#include <array>

#include "pw85/pw85.hpp"

using Vec = std::array<double, pw85::dim>;
using SymMat = std::array<double, pw85::sym>;

int main() {
Vec x1{-0.5, 0.4, -0.7};
Vec n1{0., 0., 1.};
double al = 10.;
double cl1 = 0.1;

Vec x2{0.2, -0.3, 0.4};
Vec n2{1., 0., 0.};
double a2 = 0.5;

double c2 = 5.

’

Vec rl2;
for (int i = 0; i < pw85::dim; i++) rl2[i] = x2[i] - x1[i];

SymMat ql, q2;

(continues on next page)

12 Chapter 3. Tutorial

Documentation of the pw85 library, Release 2.0

(continued from previous page)

pw85: :spheroid(al, cl, nl.data(), gl.data());
pw85: :spheroid(a2, c2, n2.data(), g2.data());

std::array<double, 2> out;

pw85::contact_function(rl2.data(), ql.data(), g2.data(), out.data());
std::cout << "mu”2 = " << out[0] << std::endl;

std::cout << "lambda = " << out[l] << std::endl;

A CMakeLists.txt file is provided for the compilation of the tutorial using CMake. You can reuse it in one of your
own projects (download):

cmake minimum required(VERSION 3.13)

project("tutorial" LANGUAGES CXX)
set (CMAKE CXX STANDARD 17)

add executable(${PROJECT NAME} ${PROJECT NAME}.cpp)
find_library(MATH_LIBRARY m)
if (MATH_LIBRARY)

target link libraries(${PROJECT NAME} INTERFACE ${MATH LIBRARY})
endif()

find package(Boost REQUIRED)
target link libraries(${PROJECT NAME} PRIVATE Boost::headers)

target include directories(${PROJECT NAME} PRIVATE "../../include")

cd into the cpp_tutorial subdirectory. The provided example program should be compiled and linked against pw85:

$ mkdir build

$ cd build

$ cmake ..

$ cmake --build . --config Release

An executable called tutorial should be present in the build/Release subdirectory. On execution, it prints the
following lines to stdout:

mut2 = 3.36271
lambda = 0.166859

3.2. C++ tutorial 13

https://cmake.org/

Documentation of the pw85 library, Release 2.0

14 Chapter 3. Tutorial

CHAPTER
FOUR

THEORY

This chapter provides the theoretical background to the Perram—Wertheim algorithm [PW85]. We use matrices rather
than tensors: a point/vector is therefore defined through the 3x1 column-vector of its coordinates. Likewise, a second-
rank tensor is represented by its 3x3 matrix.

Only the global, cartesian frame is considered here, and there is no ambiguity about the basis to which these column
vectors and square matrices refer.

4.1 Mathematical representation of ellipsoids

Ellipsoids are defined from their center c and a positive-definite quadratic form Q as the set of points m such that:

](1) (m-c)T-Q-- (m-c) = 1.

Q is a symmetric, positive-definite matrix:

(2) Q=) ai?2 vi-viT,

i

where a1, a2, as are the lengths of the principal semi-axes and v1, vz, vs their directions (unit vectors).

In the PW85 library, Q is represented as a double[6] array q which stores the upper triangular part of Q in row-major
order:

[qle] ql1] ql[2]]
(3) Q= | ql31 ql4] |.
[sym. ql51 |

4.2 The contact function of two ellipsoids

Let E1 and E:2 be two ellipsoids, defined by their centers c: and c2. and quadratic forms Q. and Qz, respectively.

For® = A = 1 and a point x, we introduce the function:

’(4) F(x, A) = A(x-Cc1)T:Q1-1-(x-c1)+(1-A)(x-Cc2)7+Qz2"1+(x-C2).

For fixed A, F(x, A) has a unique minimum [PW85] f(A), and we define:

’(5) f(A) = min{ F(x, A), x €ER® }, 0 = A = 1.

15

Documentation of the pw85 library, Release 2.0

Now, the function f has a unique maximum over [0, 1], and the“contact function” F(ri12, Qi, Qz) of ellipsoids E1
and E: is defined as:

(6) F(riz, Qi, Q2) = max{ f(A), 0 = A =11},

where ri2 = cz2-c1. It can be shown that
e if F(ri2, Qi, Q2) < 1then E: and E: overlap,
e if F(ri2, Qi, Q2)

1 then E: and E: are externally tangent,
e if F(riz2, Qi, Q2) > 1thenE: and E: do not overlap.

The contact function therefore provides a criterion to check overlap of two ellipsoids. The PW85 library computes this
value.

4.3 Geometric interpretation

The scalar A being fixed, we introduce the minimizer xo (A) of F(x, A). The stationarity of F w.r.t to x reads:

](7) VF(xo(A), A) = 0,

which leads to:

’(8) AQ1-t-[xe(A)-c2] + (1-A)Q2-1:[xo(A)-c2] =0,

and can be rearranged:

(93) Xe(A)-Cl
(9b) XO(A)-CZ

(1-A)Q2:Q":riz,
-AQ2:Q-''ri1z2,

with:

’(1@) Q = (1-A)Q: + AQa.

It results from the above that:

’(11) f(A) = F(xe(A), A) = A(1-A)r127-Q-*-r1z2.

Maximization of f with respect to A now delivers the stationarity condition:

oF
(12) 0 = f'"(A) = VF(Xo(A), A)-Xo'(A) + —(Xo(A), A).
A

Using Egs. (4) and (7), it is found that f is minimum for A = Ao such that:

(13) [Xe(Ae)-c1]7:Qi-1-[Xxe(Ae)-C1] = [Xe(Ae)-C2]7:Qz2"2+[Xo(Aeo)-C2].

Let p2 be this common value. It trivially results from Eqs. (4) and (13) that u2 = F(xe(Ae), Ao). In other words, p2
is the value of the contact function.

We are now in a position to give a geometric interpretation of p. It results from Eq. (13) and the definition of p that:

(14a) [Xe(Ae)-c1]T-(u2Q1)-t-[xe(Ae)-c1] =1,

and:

16 Chapter 4. Theory

Documentation of the pw85 library, Release 2.0

(14b) [Xo(Ae)-C2]1T+(u2Q2) " *-[Xe(Ao)-Cc2] = 1.

The above equations mean that xe (Ao) belongs to both ellipsoids centered at ¢ ; and defined by the symmetric, positive-
definite quadratic form u2Q; (j = 1, 2). These two ellipsoids are nothing but the initial ellipsoids E: and E2, scaled
by the same factor p.

Furthermore, Eq. (8) applies for A = Ae. Therefore, the normals to the scaled ellipsoids coincide at xo (Ao): the two
scaled ellipsoids are externally tangent.

To sum up, p is the common factor by wich ellipsoids E: and E> must be scaled in order for them to be externally
tangent at point xe (Ao).

4.3. Geometric interpretation 17

Documentation of the pw85 library, Release 2.0

18 Chapter 4. Theory

CHAPTER
FIVE

IMPLEMENTATION OF THE FUNCTION F

In this chapter, we explain how the contact function is computed. From Eq. (12) in chapter Theory, the value of the
contact function is found from the solution A to equation f' (A) = 0, where it is recalled that f is defined as follows:

’(1) F(A) = A(1-A)r127+Q ' r1z, ‘

with:

](2) Q = (1-A)0: + AQ:. ‘

In the present chapter, we discuss two implementations for the evaluation of f. The first implementation uses the
Cholesky decomposition of Q. The second implementation uses a representation of f as a quotient of two polynomials
(rational fraction).

5.1 Implementation #1: using Cholesky decompositions

Since Q is a symmetric, positive definite matrix, we can compute its Cholesky decomposition, which reads as follows:

](3) Q=L-L, ‘

where L is a lower-triangular matrix. Using this decomposition, it is straightforward to compute s = Q-*-r (where
we write r as a shorthand for ri2), so that:

’(4) f(A) = A(L-A)rT-s.

In order to solve f* (A) = 0 numerically, we use a Newton—Raphson procedure, which requires the first and second
derivatives of f. It is readily found that:

’(5) s’ =-0Q-'-Q"+Q-'r = -Q-t-u and rr-s’ = -r7-Q-t-u = -sT-u, ‘

withu = Qiz2-sand Q12 = Qz-Q:. Therefore:

’(6) F7(A) = (1-2\)rT+s - A(1-A)sT-u.

Similarly, introducing v = Q-*-u:

’(7) sT-u” =s7:Q12's” = -s7:Q12:Q *'u = -u'-v, ‘
and:

’(8) ut™>s” = -u™Q-*u=-ut-v. ‘
Therefore:

19

https://en.wikipedia.org/wiki/Cholesky_decomposition
https://en.wikipedia.org/wiki/Newton%27s_method

Documentation of the pw85 library, Release 2.0

’(9) f"(A) = -2r7-s - 2(1-2A)s7-u + 2A(1-A)uT-v.

5.2 Implementation #2: using rational functions

We observe that f (A) is a rational function [see Eq. (1)], and we write:

A(Ll-A)a(A)
(10) f(A) = ———,
b(A)
with:
(11a) a(A) = ri27-adj[(1-A)Q:+AQ2]-r12 = ao + aiA + azA?,
(11b) b(A) = det[(1-A)Q1+AQ2] = be + biA + b2A2 + bs3A3,

where adj (Q) denotes the adjugate matrix of Q (transpose of its cofactor matrix), see e.g Wikipedia.

The coefficients a: and b are found from the evaluation of a(A) and b(A) for specific values of A:

(123) de = a(o)l

a(l) - a(-1)
(12b) a = —,
2

a(l) + a(-1)
(12c) az = — - a(o),
2

(12d) be = b(0),

8b (%) b(1) b(-1)
(12¢) b1 = - 26(0) - — - ——
3 2 6
b(1) + b(-1)
(12f) b = — - b(0),
2
8b (%) b(-1)
(129) bs = - + 2b(0) + b(1) - ——.
3 3

This requires the implementation of the determinant and the adjugate matrix of a 3x3, symmetric matrix, see
pw85 det sym() and pw85 xT adjA x().

Evaluating the derivative of f with respect to A is fairly easy. The following Sympy script will do the job:

import sympy
from sympy import Equality, numer, pprint, Symbol

if name == "' main_ ':
sympy.init printing(use latex=False, use unicode=True)

(continues on next page)

20 Chapter 5. Implementation of the function f

https://en.wikipedia.org/wiki/Adjugate_matrix
https://www.sympy.org

Documentation of the pw85 library, Release 2.0

(continued from previous page)

= Symbol('A")
= sum(sympy.Symbol('a{}"'.format(i))*A**i for i in range(3))
= sum(sympy.Symbol('b{}'.format(i))*A**i for i in range(4))

A*(1-A)*a/b

_prime = f.diff(A).ratsimp()

= numer(f _prime)

c dict = c.collect(A, evaluate=False)

for i in range(sympy.degree(c, gen=A)+1):
pprint(Equality(Symbol('c{}'.format(i)), c dict[A**i]))

A
a
b
f
£
c

It is readily found that:

c(A)
(13) fr(A) = ——,
b(A)?2

where c(A) is a sixth-order polynomial in A:

(14) c(A) = Co + CiA + C2A2 + C3A3 + CaA* + CsA® + CeA®,

with:

(15a) Ce = aobo,

(15b) c1 = 2(ai1-ae)bo,

(15c) c2 = -ae(bi+b2) + 3bo(az-a1) + aib:,
(15d) cs3 = 2[bi(az-a1) - aebs] - 4az2bo,
(15e) Cs = (@e-ai)bs + (az-ai1)bz - 3azb:,
(15°f) Ccs = -2az2bz,

(159) Cs = -azbs,

Solving f' (A) = 0 for A is therefore equivalent to finding the unique root of ¢ in the interval @ = A = 1. For the
sake of robustness, the bisection method has been implemented (more efficient methods will be implemented in future
versions).

Once A is found, p is computed from p2 = f(A) using Eq. (10).

5.3 Comparison of the two implementations

High precision reference data was generated using the mpmath library. The reference dataset is fully described and
freely downloadable from the Zenodo platform (DOI:10.5281/zenodo.3323683). Accuracy of both implementations
is then evaluated through the following script (download source file):

#include <glib. h>
#include <hdf5.h>
#include <hdf5 hl.h>
#include <pw85.h>
#include <pw85 legacy.h>

void read dataset double(hid t const hid, char const *dset name, size_t *size,
double **buffer) {
int ndims;
H5LTget dataset ndims(hid, dset name, &ndims);
hsize t *dim = g _new(hsize t, ndims);
H5LTget dataset info(hid, dset name, dim, NULL, NULL);

(continues on next page)

5.3. Comparison of the two implementations 21

https://en.wikipedia.org/wiki/Bisection_method
http://mpmath.org/
http://about.zenodo.org/
https://doi.org/10.5281/zenodo.3323683

Documentation of the pw85 library, Release 2.0

(continued from previous page)

*size = 1;
for (size_t i = 0; i < ndims; i++) {
*size *= dim[i];
}
*buffer = g new(double, *size);
H5LTread dataset double(hid, dset name, *buffer);
g free(dim);

void update histogram(double act, double exp, size_t num bins, size_t *hist) {
double const err = fabs((act - exp) / exp);
int prec;
if (err == 0.0) {
prec = num_bins - 1;
} else {
prec = (int) (floor(-logl0(err)));
if (prec <= 0) {
prec = 0;
}
if (prec >= num _bins) {
prec = num_bins - 1;
}
}
++hist[prec];

}

int main() {
hid t const hid = H5Fopen(PW85 REF DATA PATH, H5F ACC RDONLY, H5P DEFAULT);

size_t num directions;

double *directions;

read dataset double(hid, "/directions", &num directions, &directions);
num_directions /= PW85 DIM;

size_t num_lambdas;
double *lambdas;
read dataset double(hid, "/lambdas", &num lambdas, &lambdas);

size_t num radii;
double *radii;
read dataset double(hid, "/radii", &num radii, &radii);

size_t num_spheroids;

double *spheroids;

read dataset double(hid, "/spheroids", &num_spheroids, &spheroids);
num_spheroids /= PW85 SYM;

size_t num expecteds;
double *expecteds;
read dataset double(hid, "/F", &num expecteds, &expecteds);

double *exp = expecteds;
double params[2 * PW85 SYM + PW85 DIM];

size_t num_bins = 16;
size_t histl[num bins];
size_t hist2[num bins];

(continues on next page)

22 Chapter 5. Implementation of the function f

Documentation of the pw85 library, Release 2.0

(continued from previous page)

for (size_t i = 0; i < num bins; i++) {
histl[i] = 0;
hist2[i] = 0;
}
for (size_t il = 0; il < num spheroids; il++) {
memcpy (params + PW85 DIM, spheroids + PW85 SYM * il,
PW85 SYM * sizeof(double));
for (size_t i2 = 0; i2 < num_spheroids; i2++) {
memcpy (params + PW85 DIM + PW85 SYM, spheroids + PW85 SYM * i2,
PW85 SYM * sizeof (double));
for (size_t i = 0; i < num directions; i++) {
memcpy (params, directions + PW85 DIM * i, PW85 DIM * sizeof(double));
for (size_t j = 0; j < num _lambdas; j++, exp++) {
double const actl = -pw85 f neg(lambdas[j], params);
update histogram(actl, *exp, num bins, histl);
double out[2];
pw85 legacy f2(lambdas[j], params, params + PW85 DIM,
params + PW85 DIM + PW85 SYM, out);
double const act2 = out[0];
update histogram(act2, *exp, num _bins, hist2);

FILE *f = fopen(HISTOGRAM PATH, "w");
for (size_t i = 0; i < num _bins; i++) {
fprintf(f, "%d,%g,%g\n", (int)i,
100. * ((double)histl[i]) / ((double)num expecteds),
100. * ((double)hist2[i]) / ((double)num expecteds));
}
fclose(f);

g free(spheroids);
g free(radii);

g free(lambdas);

g free(directions);
H5Fclose(hid);

return 0;

Note:

Dpw85 data=.. to meson.

To compute this program, you might need to pass the options -Dpw85 include=.., -Dpw85 lib=.. and -

Note: The provided script refers to an old implementation of pw85.

We get the histograms shown in Fig. 5.1. These histograms show that Implementation #1 is more accurate than Imple-

mentation #2. The former will therefore be selected as default.

5.3. Comparison of the two implementations

23

Documentation of the pw85 library, Release 2.0

80 A

70 A

B Implementation 1
W Implementation 2

AN ¥ % X 9 606 A 9 9
4

Precision (number of digits)

Fig. 5.1: Accuracy of the two implementations.

24

Chapter 5. Implementation of the function f

CHAPTER

SIX

OPTIMIZATION OF THE FUNCTION F

It was shown in chapter Theory [see Eq. (6)] that the contact function was defined as the maximum for @ = A = 1 of
the function f discussed in chapter Implementation of the function f.

Given that the first and second derivatives of f can be computed explicitely (see section Implementation #1: using
Cholesky decompositions in chapter Implementation of the function f) it would be tempting to use the Newton—Raphson
method to solve f’ (A) iteratively. However, our experiments show that this method performs very poorly in the present
case, because the variations of f can be quite sharp in the neighborhood of A = 0 or A = 1. To carry out the otpimization
of f, we therefore proceed in two steps.

In the first step, we use a robust optimization algorithm. We selected here Brent’s method, as implemented in the
Boost::Math library. However, this method delivers a relatively low accuracy of the maxmimizer and the maximum.

Therefore, in the second step, we use a few Newton—Raphson iterations to refine the previously obtained estimates of
the minimizer and minimum of f. In the remainder of this chapter, we describe how these Newton—Raphson iterations
are performed.

Our starting point is Egs. (9) and (13) in chapter Theory, from which it results that for a given value of A we can define
two values of p2: one is provided by Eq. (9a), the other one is given by Eq. (9b) (both in chapter Theory):

(la) M12 = [Xe(Ae)-C1]17-Q1"*-[Xe(Ae)-C1]
(1b) M22 = [Xe(Ae)-C2]T-Q2"1-[Xo(Ao)-C2]

(1-A)2s7-Q1-s,
A2sT:Qz2-s,

where we have introduced s = Q- - ri2. We further define the matrix Q:2 = Q2-Q1, so that:

(2) Qi1 = Q - AQ1:2 and Q2 =Q + (1-A)Q:2.

Combining Egs. (1) and (2) and recalling that Q-s = r then delivers the following expressions:

(3a) M12 = (1-A)2r7-s - A(1l-A)2sT-u,
(3b) M22 = A2rT-s + A2(1-A)sT-u,

where we have introduced u = Qi12-s.

The above expressions seem to behave slightly better from a numerical point of view. Our problem is now to find A
such that p:12 = p22. We therefore define the following residual:

(4) g(A) = P22 - p12 = (2A-1)r7+s + A(1l-A)sT-u,

and we need to find A such that g(A) = 0. In order to implement Newton—Raphson iterations, we need the