Bibliography¶
- Brisard & Dormieux (2010)
S. Brisard and L. Dormieux. FFT-based methods for the mechanics of composites: A general variational framework. Computational Materials Science, 49(3):663–671, 2010.
- Eyre & Milton (1999)
D.J. Eyre and G.W. Milton. A fast numerical scheme for computing the response of composites using grid refinement. European Physical Journal-Applied Physics, 6(1):41–47, 1999.
- Korringa (1973)
J. Korringa. Theory of elastic constants of heterogeneous media. Journal of Mathematical Physics, 14(4):509–513, 1973.
- Kröner (1974)
E. Kröner. On the physics and mathematics of self-stresses. In J. L. Zeman and F. Ziegler, editors, Topics in Applied Continuum Mechanics, pages 22–38. Springer Verlag Wien, 1974.
- Monchiet & Bonnet (2012)
V. Monchiet and G. Bonnet. A polarization-based FFT iterative scheme for computing the effective properties of elastic composites with arbitrary contrast. International Journal for Numerical Methods in Engineering, 89(11):1419–1436, 2012.
- Michel et al. (2001)
J.C. Michel, H. Moulinec, and P. Suquet. A computational scheme for linear and non-linear composites with arbitrary phase contrast. International Journal for Numerical Methods in Engineering, 52(1–2):139–160, 2001.
- Moulinec & Suquet (1998)
H. Moulinec and P. Suquet. A numerical method for computing the overall response of nonlinear composites with complex microstructure. Computer Methods in Applied Mechanics and Engineering, 157(1-2):69–94, 1998.
- Moulinec & Silva (2014)
H. Moulinec and F. Silva. Comparison of three accelerated fft-based schemes for computing the mechanical response of composite materials. International Journal for Numerical Methods in Engineering, 97(13):960–985, 2014.
- Zeller & Dederichs (1973)
R. Zeller and P.H. Dederichs. Elastic constants of polycrystals. Physica Status Solidi (B), 55(2):831–842, 1973.